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Derivation of the derivative of the natural

logarithm via implicit differentiation

We shall show that % (In(|z[)) = L for all z # 0 as outlined in the next section.

Approach

e We define y(z) = In (|z]) (1).
e We use the exponential function on (1) and thereby obtain an equation (2).

e We differentiate (2) with respect to z, solve for % and hence get the desired result.

Derivation
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We use the exponential function on both sides of the equation y(z) = In (|z|) = { In (—2)
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We know that g—; = 1, and also, from one of the definitions of the exponential function, that % (e*)

the chain rule, we can differentiate (2) with respect to x:
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We solve for % and substitute y(z) = n () x>0 .
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Thus, % (In(|z])) = L for all z # 0.
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