

Derivation of the derivative of $f(x) = x^s$ via implicit differentiation

For the function $f(x) = x^s$, we shall derive the derivative $f'(x) = \frac{d}{dx}(x^s) = sx^{s-1}$ for $s \in \mathbb{R}$ as outlined in the next section.

Approach

- We define $y(x) = x^s$ (1).
- We use the absolute value function followed by the natural logarithm on (1) and thereby obtain an equation (2).
- We differentiate (2) with respect to x , solve for $\frac{dy}{dx}$, and thus get the desired result.

Derivation

We use the absolute value function on both sides of (1) and make use of the rule $|x^n| = |x|^n$:

$$|y(x)| = |x^s| = |x|^s$$

Now, we use the natural logarithm on both sides, utilising $\ln(x^a) = a \ln(x)$, and we get for all $x \neq 0$:

$$\ln(|y|) = \ln(|x|^s) = s \ln(|x|) \quad (2)$$

We differentiate (2), using the chain rule and the derivative $\frac{d}{dx}(\ln(|x|)) = \frac{1}{x}$, with respect to x :

$$\frac{d}{dx}(\ln(|y|)) = s \frac{d}{dx}(\ln(|x|)) \Rightarrow \frac{1}{y} \frac{dy}{dx} = s \frac{1}{x}$$

We solve for $\frac{dy}{dx}$ and substitute $y = x^s$:

$$\frac{dy}{dx} = s \frac{y}{x} = s \frac{x^s}{x} = \underline{sx^{s-1}}$$

Hence, $\frac{d}{dx}(x^s) = sx^{s-1}$ except for $x = 0$.

Since, to set up equation (2), we had to insist on $x \neq 0$, we now have to take a closer look at $x = 0$.

A limit definition for the derivative of $f(x)$ at $x = x_0$ is:

$$f'(x_0) = \lim_{x \rightarrow x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \right)$$

So, with $f(x) = x^s$ and $x_0 = 0$, we have:

$$f'(0) = \lim_{x \rightarrow 0} \left(\frac{x^s - 0^s}{x - 0} \right) = \lim_{x \rightarrow 0} \left(\frac{x^s}{x} \right) = \lim_{x \rightarrow 0} (x^{s-1}) = \begin{cases} 0 = [sx^{s-1}]_{x=0} & s > 1 \\ 1 = [sx^{s-1}]_{x=0} & s = 1 \\ \text{no solution} & s < 1 \end{cases}$$

Thus, $\frac{d}{dx}(x^s) = sx^{s-1}$ for $s \in \mathbb{R}$, but there is no solution for the combination $x = 0$ and $s < 1$.