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Derivation of Euler’s formula via differential
equation
We shall derive Euler’s formula eix = cos(x) + i sin(x) as described in the next section.

Approach

• We express eix as a complex number in polar coordinates with radius r and azimuth φ (see Figure 1), thus
eix = r (cos(φ) + i sin(φ)) (1) .

• We differentiate (1) with respect to x and thereby get an equation (2), wherein we eliminate eix by using (1).

• We solve (2) for dr
dx and dφ

dx and therewith find r(x) and φ(x) by direct integration. We substitute all of these
in (2) and obtain an equation (3).

• Using the condition e0 = 1, we find the two constants of integration in (3) and so arrive at the desired result.
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Figure 1: Representation of eix in polar coordinates.

Derivation

If eix is a complex number (or a real number, which form a subset of the complex numbers), it must be possible,
as with any other complex number, to express it in polar coordinates. This idea leads us directly to equation (1),
which we now differentiate with respect to x using the product, chain and constant rules:

d

dx

(
eix

)
=

d

dx
(r(x) (cos(φ(x)) + i sin(φ(x))))

ieix =
dr

dx
(cos(φ) + i sin(φ)) + r

(
− sin(φ)

dφ

dx
+ i cos(φ)

dφ

dx

)
(2)
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We substitute eix on the left-hand side of this equation with the expression in polar coordinates in (1) and expand:

ir (cos(φ) + i sin(φ)) =
dr

dx
(cos(φ) + i sin(φ)) + r

(
− sin(φ)

dφ

dx
+ i cos(φ)

dφ

dx

)

ir cos(φ)− r sin(φ) = dr

dx
cos(φ) + i

dr

dx
sin(φ)− r sin(φ)dφ

dx
+ ir cos(φ)

dφ

dx

Since the real (<) and imaginary (=) parts on both sides of this equation must be equal, we obtain the following
system of equations:

< (ir cos(φ)− r sin(φ)) = <
(
dr

dx
cos(φ) + i

dr

dx
sin(φ)− r sin(φ)dφ

dx
+ ir cos(φ)

dφ

dx

)
(I)

= (ir cos(φ)− r sin(φ)) = =
(
dr

dx
cos(φ) + i

dr

dx
sin(φ)− r sin(φ)dφ

dx
+ ir cos(φ)

dφ

dx

)
(II)

−r sin(φ) = dr

dx
cos(φ)− r sin(φ)dφ

dx
(I) r cos(φ) =

dr

dx
sin(φ) + r cos(φ)

dφ

dx
(II)

We multiply (I) with cos(φ) and (II) with sin(φ):

−r sin(φ) cos(φ) = dr

dx
cos2(φ)− r sin(φ) cos(φ)dφ

dx
(Ia)

r sin(φ) cos(φ) =
dr

dx
sin2(φ) + r sin(φ) cos(φ)

dφ

dx
(IIa)

We add (Ia) to (IIa) and use the trigonometric identity cos2(φ) + sin2(φ) = 1:

(Ia)+(IIa): 0 =
dr

dx

(
cos2(φ) + sin2(φ)

)
⇒ dr

dx
= 0

With dr
dx = 0, (II) becomes:

r cos(φ) = r cos(φ)
dφ

dx
⇒ dφ

dx
= 1

By direct integration, we find that, with dr
dx = 0, r(x) = c1 and, with dφ

dx = 1, φ(x) = x+ c2, where c1 and c2 are
constants of integration. With these, equation (2) becomes:

ieix = c1 (− sin(x+ c2) + i cos(x+ c2)) ⇒ eix = c1 (cos(x+ c2) + i sin(x+ c2)) (3)

To find the values of c1 and c2, we use the condition e0 = 1 and hence, with x = 0, equation (3) is 1 =
c1 (cos(c2) + i sin(c2)). Equating real and imaginary parts, as above, gives the following system of equations:
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< (1) = < (c1 cos(c2) + ic1 sin(c2)) (III) = (1) = = (c1 cos(c2) + ic1 sin(c2)) (IV)

1 = c1 cos(c2) (III) 0 = c1 sin(c2) (IV)

(IV) is true for c1 = 0 and/or for sin(c2) = 0. But, c1 cannot be zero because this would not satisfy (III), thus we
need:

sin(c2) = 0 ⇒ c2 = nπ forn ∈ Z

Since cos(c2) = 1 for n even, so that c2 = 2kπ for k ∈ Z, and cos(c2) = −1 for n odd, so that c2 = (2k + 1)π for
k ∈ Z, we need to analyse both cases, c1 = 1, c2 = 2kπ and c1 = −1, c2 = (2k + 1)π separately.

For c1 = 1, c2 = 2kπ:
Equation (3) becomes eix = cos(x+2kπ)+ i sin(x+2kπ). But, since sine and cosine are 2π-periodic, cos(x+2kπ) =
cos(x) and sin(x+ 2kπ) = sin(x) and thus, in this case, we have eix = cos(x) + i sin(x).

For c1 = −1, c2 = (2k + 1)π:
Equation (3) becomes eix = − (cos(x+ 2kπ + π) + i sin(x+ 2kπ + π)). But, for the same reason as above, cos((x+
π) + 2kπ) = cos(x + π) and sin((x + π) + 2kπ) = sin(x + π); and since cos(x + π) = − cos(x) and sin(x + π) =
− sin(x), we have cos(x + (2k + 1)π) = − cos(x) and sin(x + (2k + 1)π) = − sin (x). Hence, in this case, we get
eix = − (− cos(x)− i sin(x)) = cos(x) + i sin(x) as well.

Both cases lead to the same result, which is eix = cos(x) + i sin(x), as expected.
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