Euler’s formula via differential equation Andri Martinelli

Derivation of Euler’s formula via differential
equation

We shall derive Euler’s formula e’ = cos(z) + isin(x) as described in the next section.

Approach

e We express ¥ as a complex number in polar coordinates with radius r and azimuth ¢ (see Figure 1), thus

e = r (cos(¢) + isin(e)) (1) .
e We differentiate (1) with respect to x and thereby get an equation (2), wherein we eliminate e’ by using (1).

e We solve (2) for 4= and % and therewith find r(z) and ¢(x) by direct integration. We substitute all of these
in (2) and obtain an equation (3).

e Using the condition e = 1, we find the two constants of integration in (3) and so arrive at the desired result.
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Figure 1: Representation of ¢ in polar coordinates.

Derivation

If €' is a complex number (or a real number, which form a subset of the complex numbers), it must be possible,
as with any other complex number, to express it in polar coordinates. This idea leads us directly to equation (1),
which we now differentiate with respect to x using the product, chain and constant rules:

() = - (r(2) (cos(8(x)) + isin(6(2))))

(cos(¢) + isin(@)) + r (— sin(¢)d—¢ + icos(qﬁ)w) (2)

e T dx dx dx
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We substitute e on the left-hand side of this equation with the expression in polar coordinates in (1) and expand:

ir (cos(¢) + isin(¢)) = ;l—; (cos(@) + isin(@)) + r (— sin(aS)% +1 cos(qﬁ)jﬁ)
ircos(¢) — rsin(¢) = Z—; cos(¢) + 13—; sin(¢) — r Sin(gzﬁ)% +ir cos(gﬁ)%

Since the real (R) and imaginary () parts on both sides of this equation must be equal, we obtain the following
system of equations:

R (ir cos(¢) — rsin(¢)) =R (Z; cos(¢) + z% sin(¢) —r sin(qb)% +ir cos(q&)iji) (I)
. . dr dr . dp . do
S (ircos(¢) — rsin(¢)) =3 <dm cos(¢) + i sin(¢) —r sm((b)% +r cos(qﬁ)m) (IT)
—rsin(¢) = % cos(¢p) —r sin(cﬁ)% (I) rcos(¢) = ;l—; sin(¢) +r cos(qb)fl—ﬁ (IT)

We multiply (I) with cos(¢) and (IT) with sin(¢):

—rsin(¢) cos(¢) = 3—; cos?(¢p) — rsin(¢) cos(qﬁ)@ (Ta)

dx
rsin(¢) cos(¢) = 3—; sin?(¢) 4 rsin(¢) cos(gb)% (ITa)
We add (Ia) to (ITa) and use the trigonometric identity cos?(¢) + sin?(¢) = 1:
(Ta)+(11a): 0= Z—; (cos?(¢) + sin®(¢)) = Z—Z =0

With 42 = 0, (II) becomes:

rcos(¢) = rcos(gb)% = % =1

By direct integration, we find that, with g—; =0, r(z) = ¢1 and, with % =1, ¢(x) = x + co, where ¢; and ¢y are

b d
constants of integration. With these, equation (2) becomes:

ie" = ¢1 (—sin(z + ¢) + i cos(z + ¢2)) = e = ¢ (cos(x + ¢) +isin(x + ¢3)) (3)

To find the values of ¢; and co, we use the condition ¢ = 1 and hence, with z = 0, equation (3) is 1
1 (cos(ca) + isin(cq)). Equating real and imaginary parts, as above, gives the following system of equations:
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R (1) = R (c1 cos(ca) + icy sin(ez)) (111) (1) = S (eq cos(ez) + icy sin(es)) (IV)
1 =¢1 cos(cz) (I11) 0 = c¢; sin(cg) (Iv)

(IV) is true for ¢; = 0 and/or for sin(cz) = 0. But, ¢; cannot be zero because this would not satisfy (III), thus we
need:
sin(cy) =0 = co =nmforn € Z

Since cos(cz) = 1 for n even, so that co = 2k7 for k € Z, and cos(c2) = —1 for n odd, so that c; = (2k + 1) 7 for
k € Z, we need to analyse both cases, ¢; = 1, co = 2kw and ¢; = —1, ¢co = (2k + 1) 7 separately.

For ¢; =1, co = 2km:

Equation (3) becomes e = cos(x + 2k7) +i sin(z +2k). But, since sine and cosine are 2n-periodic, cos(z + 2kn) =
cos(x) and sin(z + 2k7) = sin(z) and thus, in this case, we have e'® = cos(x) + i sin(z).

For c; = -1, co=(2k+1)m:

Equation (3) becomes e = — (cos(x + 2k + ) + i sin(z + 2k7 + 7)). But, for the same reason as above, cos((z +
) + 2kw) = cos(z + 7) and sin((xz + 7) + 2k7) = sin(x + 7); and since cos(z + m) = —cos(x) and sin(z + ) =
—sin(z), we have cos(z + (2k + 1) 1) = —cos(x) and sin(z + (2k +1) ) = —sin (z). Hence, in this case, we get

¥ = — (—cos(x) — isin(x)) = cos(z) + isin(z) as well.

Both cases lead to the same result, which is ¢! = cos(z) + isin(z), as expected.




