
Quadratic formula by completing the square Andri Martinelli

Derivation of the quadratic formula by completing
the square
We shall derive the quadratic formula x1,2 = −b±

√
b2−4ac
2a , which provides the solutions to a general quadratic

equation ax2 + bx+ c = 0 (1) with a 6= 0, as outlined in the next section.

Approach

• We complete the square for (1).

• We solve the equation for the squared binomial.

• We extract the square root and get, by solving the equation thus generated for x, the desired result.

Derivation

We factor out a from (1):
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After the first two terms in parentheses we insert a constant term
(
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, which was chosen such that the first three

terms in parentheses combine to give a squared binomial. Then, we immediately subtract said term again to not
falsify the equation:
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Since x2 + b
ax+
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, we get:
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We multiply out the outermost brackets and solve the equation for the squared binomial:
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We extract the square root, then solve for x and thereby get the desired result:
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√
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Thus, the solutions to (1) are given by x1,2 = −b±
√
b2−4ac
2a .
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