Quadratic formula by completing the square Andri Martinelli

Derivation of the quadratic formula by completing
the square

We shall derlve the quadratic formula z; 2 = *biv b2 dac which provides the solutions to a general quadratic

equation az? + bx + ¢ =0 (1) with a # 0, as outhned in the next section.

Approach

e We complete the square for (1).
e We solve the equation for the squared binomial.

e We extract the square root and get, by solving the equation thus generated for z, the desired result.

Derivation

We factor out a from (1):
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After the first two terms in parentheses we insert a constant term (%) , which was chosen such that the first three
terms in parentheses combine to give a squared binomial. Then, we immediately subtract said term again to not
falsify the equation:

; 2 b b2 _ b \2 .
Since 22 + 2z + ()" = (z+ )", we get:
We multiply out the outermost brackets and solve the equation for the squared binomial:
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We extract the square root, then solve for x and thereby get the desired result:
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Thus, the solutions to (1) are given by z; , = —tEvh—dac W.



