
Eulersche Formel via Differentialgleichung Andri Martinelli

Herleitung der Eulerschen Formel via
Differentialgleichung
Wir wollen die Eulersche Formel eix = cos(x) + i sin(x) wie in der nächsten Sektion beschrieben herleiten.

Vorgehen

• Wir schreiben eix als komplexe Zahl in Polarkoordinaten mit Radius r und Azimut φ (siehe Abbildung 1),
also eix = r (cos(φ) + i sin(φ)) (1) .

• Wir leiten (1) nach x ab und erhalten eine (ebenfalls zweidimensionale) Gleichung (2), worin wir durch
Verwendung von (1) eix eliminieren.

• Wir lösen (2) nach dr
dx und dφ

dx und finden damit (durch direkte Integration) r(x) und φ(x). All diese setzen
wir nun in (2) ein, was eine Gleichung (3) ergibt.

• Mit Hilfe der Bedingung e0 = 1 finden wir nun noch die zwei Integrationskonstanten in (3) und erhalten
dadurch das gewünschte Resultat.

φ(x) ℜ

ℑ

eix

r(x)

r cos(φ)

r sin(φ)

Abbildung 1: Polarkoordinaten von eix.

Herleitung

Ist eix eine komplexe Zahl (oder auch eine reelle, da diese eine Teilmenge der komplexen bilden), dann muss es
möglich sein, sie wie jede andere komplexe Zahl in Polarkoordinaten auszudrücken. Diese Idee führt zur Gleichung
(1), die wir nun mit Hilfe der Produkt-, Ketten- und Konstantenregel nach x ableiten:

d

dx

(
eix

)
=

d

dx
(r(x) (cos(φ(x)) + i sin(φ(x))))
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ieix =
dr

dx
(cos(φ) + i sin(φ)) + r

(
− sin(φ)

dφ

dx
+ i cos(φ)

dφ

dx

)
(2)

Wir ersetzen eix auf der linken Seite dieser Gleichung mit dem Polarkoordinatenausdruck in (1) und multiplizieren
die Klammern aus:

ir (cos(φ) + i sin(φ)) =
dr

dx
(cos(φ) + i sin(φ)) + r

(
− sin(φ)

dφ

dx
+ i cos(φ)

dφ

dx

)

ir cos(φ)− r sin(φ) = dr

dx
cos(φ) + i

dr

dx
sin(φ)− r sin(φ)dφ

dx
+ ir cos(φ)

dφ

dx

Da die Real- (<) und Imaginärteile (=) beider Seiten gleich sein müssen, erhalten wir folgendes Gleichungssystem:

< (ir cos(φ)− r sin(φ)) = <
(
dr

dx
cos(φ) + i

dr

dx
sin(φ)− r sin(φ)dφ

dx
+ ir cos(φ)

dφ

dx

)
(I)

= (ir cos(φ)− r sin(φ)) = =
(
dr

dx
cos(φ) + i

dr

dx
sin(φ)− r sin(φ)dφ

dx
+ ir cos(φ)

dφ

dx

)
(II)

−r sin(φ) = dr

dx
cos(φ)− r sin(φ)dφ

dx
(I) r cos(φ) =

dr

dx
sin(φ) + r cos(φ)

dφ

dx
(II)

Wir multiplizieren (I) mit cos(φ) und (II) mit sin(φ):

−r sin(φ) cos(φ) = dr

dx
cos2(φ)− r sin(φ) cos(φ)dφ

dx
(Ia)

r sin(φ) cos(φ) =
dr

dx
sin2(φ) + r sin(φ) cos(φ)

dφ

dx
(IIa)

Wir addieren (Ia) zu (IIa) und nutzen die trigonometrische Identität cos2(φ) + sin2(φ) = 1:

(Ia)+(IIa): 0 =
dr

dx

(
cos2(φ) + sin2(φ)

)
⇒ dr

dx
= 0

Mit dr
dx = 0 wird (II) zu:

r cos(φ) = r cos(φ)
dφ

dx
⇒ dφ

dx
= 1

Durch direktes Integrieren finden wir, dass, da dr
dx = 0, r(x) = c1 und, weil dφdx = 1, φ(x) = x+ c2, wobei c1 und c2

Integrationskonstanten sind. Damit wird Gleichung (2) zu:
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ieix = c1 (− sin(x+ c2) + i cos(x+ c2)) ⇒ eix = c1 (cos(x+ c2) + i sin(x+ c2)) (3)

Um die Werte der Konstanten c1 und c2 zu ermitteln, können wir die Bedingung e0 = 1 nutzen. Also, mit x = 0,
wird Gleichung (3) zu 1 = c1 (cos(c2) + i sin(c2)).
Setzen wir wie oben Real- und Imaginärteile gleich, erhalten wir das folgende Gleichungssystem:

< (1) = < (c1 cos(c2) + ic1 sin(c2)) (III) = (1) = = (c1 cos(c2) + ic1 sin(c2)) (IV)

1 = c1 cos(c2) (III) 0 = c1 sin(c2) (IV)

(IV) ergibt eine wahre Aussage mit c1 = 0 und/oder mit sin(c2) = 0. c1 kann nicht Null sein, da sonst (III) nicht
erfüllt wäre und somit benötigen wir:

sin(c2) = 0 ⇒ c2 = nπ fürn ∈ Z

Da cos(c2) = 1 für gerade n, also c2 = 2kπ für k ∈ Z und cos(c2) = −1 für ungerade n, also c2 = (2k + 1)π für
k ∈ Z, haben wir zwei mögliche Fälle zu untersuchen, nämlich c1 = 1, c2 = 2kπ und c1 = −1, c2 = (2k + 1)π.

Für c1 = 1, c2 = 2kπ:
Gleichung (3) wird zu eix = cos(x + 2kπ) + i sin(x + 2kπ). Aber Sinus und Kosinus sind 2π-periodisch und somit
ist cos(x+ 2kπ) = cos(x) und sin(x+ 2kπ) = sin(x). Also haben wir in diesem Fall eix = cos(x) + i sin(x).

Für c1 = −1, c2 = (2k + 1)π:
Gleichung (3) wird zu eix = − (cos(x+ 2kπ + π) + i sin(x+ 2kπ + π)). Aber aus demselben Grund wie oben ist
cos((x + π) + 2kπ) = cos(x + π) und sin((x + π) + 2kπ) = sin(x + π) und weil cos(x + π) = − cos(x) und
sin(x + π) = − sin(x) ist, ist also cos(x + (2k + 1)π) = − cos(x) und sin(x + (2k + 1)π) = − sin (x). Somit ergibt
sich hier ebenfalls eix = − (− cos(x)− i sin(x)) = cos(x) + i sin(x).

Beide Fälle führen wie erwartet zum selben Ergebnis, nämlich eix = cos(x) + i sin(x).
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