
Euler-Lagrange Gleichung via Gâteaux-Differential Andri Martinelli

Herleitung der Euler-Lagrange Gleichung via
Gâteaux-Differential
Wir wollen wie in der nächsten Sektion beschrieben die Euler-Lagrange Gleichung für das Funktional S [y(x)] =
r b
a
F (x, y(x), y′(x)) dx (1) mit Randbedingungen y(a) = A und y(b) = B, nämlich d

dx

(
∂F
∂y′

)
− ∂F

∂y = 0, y(a) = A,
y(b) = B , herleiten.

Vorgehen

• Falls das Funktional (1) einen stationären Pfad y(x) hat, dann muss dieser Pfad dessen erste (generalisierte)
Ableitung, das Gâteaux-Differential, Null machen. Also wenden wir das Gâteaux-Differential auf (1) an, setzen
es gleich Null und erhalten dadurch (2).

• Wir drücken S [y + εh] in (2) mit Hilfe einer Taylor Expansion von F um (x, y, y′) bis O(ε) aus.

• Wir nutzen die Leibnizregel für die Differentiation unter dem Integral, um die Operationsreihenfolge umzu-
kehren und erhalten dadurch eine Gleichung (3).

• Wir eliminieren h′ in (3) durch partielle Integration, wenden das fundamentale Lemma der Variationsrechnung
auf die dadurch entstandene Gleichung an und erhalten somit das gewünschte Resultat.

Herleitung

Das Gâteaux-Differential eines Funktionals S [y(x)] mit zulässiger Variation h(x) - also h in D1 (a, b) für schwache
oder h in D0 (a, b) für starke Variationen und h(a) = h(b) = 0 - und mit F, h ∈ Cn [a, b] für n ≥ 2 ist:

∆S [y(x), h(x)] = lim
ε→0

(
d

dε
(S [y + εh])

)

Für einen stationären Pfad des Funktionals S benötigen wir:

∆S = lim
ε→0

(
d

dε
(S [y + εh])

)
= 0 (2)

Mit einem zulässigen, variierten Pfad y + εh wird (1) zu:

S [y + εh] =

bw

a

F (x, y + εh, y′ + εh′) dx

Also muss sowohl h wie auch h′ beschränkt sein und somit benötigen wir h in D1 (a, b), um fortfahren zu können.

Wir machen eine Taylor Expansion von F um (x, y, y′) bis O(ε):

F


xy
y′

T

+

 0
εh
εh′

T
 = F (x, y, y′) + 0 · Fx + εhFy + εh′Fy′ +O(ε2)

, wobei Fx = ∂F
∂x , Fy = ∂F

∂y und Fy′ = ∂F
∂y′ ist.
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Also haben wir:

S [y + εh] =

bw

a

(
F (x, y, y′) + εhFy + εh′Fy′ +O(ε2)

)
dx

Und damit wird (2) zu:

lim
ε→0

(
d

dε

(
bw

a

(
F (x, y, y′) + εhFy + εh′Fy′ +O(ε2)

)
dx

))
= 0

Da a und b Konstanten sind, können wir hier den Spezialfall der Leibnizregel für die Differentiation unter dem
Integral, nämlich d

dx

(r b
a
f(x, t) dt

)
=

r b
a

∂
∂x (f(x, t)) dt, anwenden:

lim
ε→0

(
d

dε

(
bw

a

(
F (x, y, y′) + εhFy + εh′Fy′ +O(ε2)

)
dx

))
= lim
ε→0

(
bw

a

∂

∂ε

(
F (x, y, y′) + εhFy + εh′Fy′ +O(ε2)

)
dx

)
= 0

lim
ε→0

(
bw

a

(hFy + h′Fy′ +O(ε)) dx

)
= 0 ⇒

bw

a

(hFy + h′Fy′) dx = 0

⇒
bw

a

hFy dx+

bw

a

h′Fy′ dx = 0 (3)

Wir integrieren den zweiten Integral in (3) partiell:

Zeichen Differentiation Integration
+ Fy′ h′

- d
dx (Fy′) h

Und erhalten somit:

bw

a

h′Fy′ dx = [Fy′h]
b
a −

bw

a

d

dx
(Fy′)h dx

Da aber (wie anfangs erwähnt) für eine zulässige Variation h(a) = h(b) = 0, haben wir:

[Fy′h]
b
a = Fy′ |x=bh(b)− Fy′ |x=ah(a) = 0

Also ist
r b
a
h′Fy′ dx = −

r b
a

d
dx (Fy′)h dx und damit wird (3) zu:

bw

a

hFy dx+

bw

a

h′Fy′ dx =

bw

a

hFy dx−
bw

a

d

dx
(Fy′)h dx = 0

⇒
bw

a

(
d

dx
(Fy′)− Fy

)
h(x) dx = 0
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Nutzen wir nun das fundamentale Lemma der Variationsrechnung, wonach
r b
a
z(x)h(x) dx = 0 für alle zulässigen h

nur wenn z(x) = 0, erhalten wir:

d

dx
(Fy′)− Fy = 0

Also ist d
dx

(
∂F
∂y′

)
− ∂F

∂y = 0 mit y(a) = A und y(b) = B nötig für einen stationären Pfad y(x) des
Funktionals S. Dies ist die Euler-Lagrange Gleichung für S.
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